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	 Winter mixed-precipitation events across the mid-Atlantic region of the United States from 2013–2014 through 
2018–2019 were used to analyze common short-term model forecasts of vertical atmospheric thermal structure. 
Using saturated forecast soundings of the North American Mesoscale (NAM), higher-resolution nested NAM 
(NAMnest), and the Rapid Refresh models—corresponding with observed warm-nose precipitation events 
(WNPEs)—several thermal metrics formed the basis of the analysis of observed and forecast soundings, 
including Bourgouin positive and negative areas. While the three models accurately forecast the general thermal 
structure well during WNPEs, a warm bias is evident within each. Well forecast are maximum and minimum 
temperatures within the warm nose and surface-based cold layer, respectively, but the cold layer is commonly 
too thin for each of the models, and the warm nose is regularly too thick, particularly within NAM and NAMnest 
forecasts. Forecasts of a cold layer that is too shallow tend to coincide with observations of stronger synoptic-
scale upward motion, a deeper cold surface-based layer, and a higher isentropic surface. Forecasts of a warm 
nose that is too thick tend to coincide with observations of weaker upward motion, a shallower cold surface-
based layer, and a lower isentropic surface across the region. Two-thirds of precipitation-type estimates from 
model soundings agreed with those derived from observed soundings, with the remaining third predominantly 
representing a warm bias in precipitation type.

ABSTRACT

(Manuscript received 20 June 2021; review completed 2 February 2022)

1.	 Introduction

	 Winter mixed-precipitation events, particularly 
those involving freezing rain, are among the most 
disruptive and costly weather hazards. Billion-dollar 

damage events in the United States and Canada have 
been well documented (McCray et al. 2019), while the 
study of insured property losses in the United States 
due to freezing rain revealed >$16 billion in damages 
over a 52-yr period (Changnon 2003). The most 
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obvious impacts are interruption of travel and damage 
to power infrastructure, which can result in prolonged 
power loss. For example, an ice accretion of 0.25–1.27 
cm (0.1–0.5 in) from an autumn 2018 event across 
southwestern Virginia within the eastern United States 
disrupted power for 77% of utility customers in one 
rural county while triggering 59 traffic accidents on 
state roads within a 4-h period across a four-county area 
(Gendreau 2021). Areas of the eastern United States east 
of the Appalachian Mountains are susceptible to mixed-
precipitation events as low-level cold air can become 
entrenched against the mountains beneath warm flow 
aloft (Keeter et al. 1995; Rauber et al. 2001; Changnon 
and Karl 2003). 
	 Freezing rain and ice pellets commonly occur when 
ice crystals aloft fall through a warm (>0°C or 32°F) 
layer above surface-based cold (<0°C or 32°F) air. The 
degree to which the ice crystal melts dictates the surface 
precipitation type, with partial melting leaving an ice 
nucleus that aids refreezing to an ice pellet, and complete 
melting requiring the aid of a cold surface for refreezing 
as accretion, or freezing rain (Forbes et al. 1987). 
Light freezing rain also can occur in a homogeneously 
cold atmosphere within which moisture/saturation is 
shallow, and thus too warm to generate the ice crystals 
necessary for atmospheric ice formation. Limited 
moisture and weaker vapor diffusion without ice crystal 
nuclei generally yields very light freezing rain or drizzle 
(McCray et al. 2019).
	 Warm southerly flow above a surface cold layer is 
relatively common within the eastern United States east 
of the Appalachian Mountains, where cold-air advection 
directed from the northeast by an anticyclone to the 
north “dams” cold air against the mountains. Cold-air 
damming yields ageostrophic flow of cold air southward 
along the eastern mountain slopes while inducing higher 
atmospheric pressure with an accumulation of mass 
and a depth of cold air sufficient for frozen or freezing 
precipitation. Warm-air advection above the cold layer 
can result from southerly geostrophic flow, or from 
southerly flow originating lower in the atmosphere in 
association with passage of a mid-latitude cyclone, or 
weaker low-pressure center.
	 Within the thermal profile common to ice-pellet 
and freezing rain events, the warm air aloft often is 
referenced as the “warm nose” because of the shape of 
the profile on a thermodynamic diagram. In the example 
from 1200 UTC 18 February 2021 at Blacksburg, 
Virginia (KRNK, Fig. 1), a deep warm layer, with a 
maximum temperature of 4.4°C, extends from around 

890 to 690 hPa above surface-based cold layer (946–
890 hPa) with a minimum temperature of –5.3°C. At or 
close to saturation through about 700 hPa, the thermal 
profile yielded a mix of freezing rain and ice pellets. 
For this form of thermal profile, precipitation type is 
predicated on the temperature and thickness of each of 
the layers—freezing rain (ice pellets) from a generally 
warmer (cooler) atmosphere consisting of a thicker 
(thinner) warm layer and a thinner (thicker) cold layer.
	 While the vertical thermal profile and synoptic 
atmospheric conditions for mixed-precipitation events 
in the eastern United States are rather well understood 
in theory, precipitation-type forecasting remains a 
practical challenge (Ralph et al. 2005; Ikeda et al. 
2017; McCray et al. 2019). As Hux et al. (2001) noted, 
“the proper forecast of type and duration of winter 
precipitation is one of the most difficult challenges in 
operational meteorology.” Forecasts of thermodynamic 
structure are key, and it is important to understand 
interregional variability in model and algorithm 
performance (Robbins and Cortinas 2002). Guidance 
for forecasters as to how individual model biases 
might influence model blends of first-guess fields (e.g., 
warm-nose strength) that determine precipitation-type 
output is useful (Wandishin et al. 2005). Ikeda et al. 

Figure 1. Atmospheric sounding at 1200 UTC 18 
February 2021 at Blacksburg, VA (KRNK), as portrayed 
on a skewT–logp thermodynamic diagram. Vertical 
profiles of air (Ta) and dewpoint (Td) temperatures are 
represented by the solid, black lines. The 0°C isotherm 
is in red (Obtained from http://weather.uwyo.edu/
upperair/sounding.html.). Click image for an external 
version; this applies to all figures and hereafter.

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_01.png
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(2013) evaluated the ability of the National Oceanic 
and Atmospheric Administration’s (NOAA) High-
Resolution Rapid Refresh (HRRR) model to determine 
precipitation phase as rain, snow, or mixed during the 
2010–2011 winter season. They found good qualitative 
model performance in terms of the spatial coverage in 
rain–snow transition areas and freezing-precipitation 
cases. However, HRRR model performance was less 
skillful quantitatively in regions with mixed precipitation 
(Ikeda et al. 2013). Their results signaled a need for a 
deeper diagnosis of model shortcomings in depicting 
mixed-precipitation events. Subsequently, Ikeda et 
al. (2017) re-engaged the HRRR model’s ability to 
forecast mixed-precipitation using surface observations 
and soundings across two winter seasons. They found 
the model to forecast the observed temperature profile 
associated with mixed-precipitation events reasonably 
well, but they identified a warm bias—particularly at 
the surface (<2°C) and in cold-air damming situations 
in the eastern United States (~4°C)—yielding errors in 
precipitation-type forecasts.
	 In this study, we analyze model forecast soundings 
associated with warm-nose precipitation events 
(WNPEs) for three numerical weather prediction 
(NWP) models operated by the National Centers for 
Environmental Prediction (NCEP): North American 
Mesoscale (NAM), higher-resolution nested NAM 
(hereafter, NAMnest), and Rapid Refresh (RAP). These 
represent the three relatively high-resolution models for 
which forecast sounding archives are readily available, 
while they also represent the model solutions used in 
the short term by the National Weather Service (NWS) 
National Blend of Models (Craven et al. 2020; https://
www.meted.ucar.edu/education_training/course/52). 
All three models are generated with Weather Research 
and Forecasting (WRF) model dynamical solvers. 
The two NAM models use the WRF Nonhydrostatic 
Mesoscale Model (WRF-NMM) solver and run four 
times per day (0000, 0600, 1200, and 1800 UTC), out 
to 84 h for the NAM and 60 h for the NAMnest (NCEP 
2020). The NAM and NAMnest models are run with 12- 
and 3-km horizontal grid spacings, respectively, with 
60 vertical layers. The RAP model uses the Advanced 
Research WRF (WRF-ARW) core and operates on a 
3-km spatial grid with 50 vertical layers and executes 
four times per day with hourly output to 51 h; the WRF-
ARW also runs on an hourly schedule out to 21 h (NCEP 
2020).
	 To focus on contemporary model operation, 
the period of study is limited to the six cool seasons 

(November through April) from 2013–2014 through 
2018–2019. Still, changes to the models during the 
study period could influence skill or bias. We reviewed 
the NCEP documentation of changes to the models and 
the implementation dates (https://www.nco.ncep.noaa.
gov/pmb/changes/), and identified five modifications 
that could impact the accuracy of thermal profile 
forecasts. These modifications include: (1) February 
2014 (RAP model)—upgrade of data assimilation, 
upgrade to WRF core, upgrade to microphysics, and 
new planetary boundary layer scheme; (2) August 2014 
(NAM model)—upgrade of microphysics, radiation, 
and convective parameterization scheme, and changes 
to data assimilation; (3) August 2016 (RAP model)—
changes to assimilation of hydrometeor and mesonet 
data, and updates to WRF and microphysics package; 
(4) March 2017 (NAM/NAMnest model)—NAMnest 
grid spacing change (4 km to 3 km), improved radiation 
scheme, quantitative precipitation forecast bias 
correction, changes to data assimilation, and reduction 
of terrain smoothing; (5) July 2018 (RAP model)—data 
assimilation upgrade, WRF update, new hybrid vertical 
coordinate system, improved terrain representation, 
improved simulation of air temperatures over terrain, 
and improved microphysics for upper clouds. It is 
beyond the scope of this study to examine whether 
a given change alters model performance related to 
the thermal profile, or to what degree performance 
is altered. Instead, we analyze the overall model 
performance with the caveats that continuous model 
upgrades to operational models can influence any 
biases that we uncover during the study period. Similar 
studies have been conducted to evaluate the forecast 
precipitation phase in multiple versions of the HRRR 
model (Ikeda et al. 2013, 2017) and for comparing 
multiple precipitation-type algorithms over multiple 
winter seasons (Reeves et al. 2014). Such an approach 
can be useful for understanding systemic biases for 
a given model (in this case with a focus on mixed-
precipitation events in a particular geographic region).
	 The spatial domain for the study is an area of the mid-
Atlantic region, east of the Appalachian Mountains, that 
is frequently susceptible to winter precipitation-type 
forecast challenges. Specifically, this study focuses on 
areas represented by three sounding locations [KRNK; 
Greensboro, North Carolina (KGSO); and Sterling, 
Virginia (KIAD); see Fig. 2] and five Automated 
Surface Observing System (ASOS)/Automated Weather 
Observing System (AWOS) locations (Table 1, Fig. 2). 
While surface observations of precipitation type are 

https://www.meted.ucar.edu/education_training/course/52
https://www.meted.ucar.edu/education_training/course/52
https://www.nco.ncep.noaa.gov/pmb/changes/
https://www.nco.ncep.noaa.gov/pmb/changes/
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used to identify potentially impactful events, this study 
focuses on those with an identifiable warm nose in the 
sounding data, which represents the underlying cause of 
the precipitation type and is the key forecast element.

2.	 Data and methods

a.	 Identification of warm-nose precipitation events

	 Raw Meteorological Aerodrome Reports (METAR) 
data for each of the five ASOS/AWOS study locations 
were downloaded from the Iowa Environmental 
Mesonet (IEM) data archive at Iowa State University 
(https://mesonet.agron.iastate.edu/request/download.
phtml) for November through April for the 6-yr 
study period 2013–2014 through 2018–2019. Any of 
nine METAR weather report codes associated with 
precipitation (Table 2) in combination with a surface 
air temperature ≤1.7°C (35°F) were used to define 
the possibility of frozen or freezing precipitation. 

The METAR code, unknown precipitation (UP), was 
included because of the known difficulty in mixed-
precipitation identification by ASOS/AWOS sensors 
(Landolt et al. 2019). Potential WNPEs included all 
periods of ≥6 h [a threshold previously used to define 
a long-duration event (McCray et al. 2020)] with one 
or more precipitation types (Table 2) coincident with 
an air temperature ≤1.7°C. For inclusion as a WNPE, 
≥50% of the observations within the period needed to 
meet the weather code and temperature criteria, with 
≥10% of observations of a precipitation type other than 
snow or rain. The observation threshold for snow/rain 
eliminated events that were predominantly snow, cold 
rain, or mixed rain/snow.
	 The basis of a subjective classification of the 
synoptic pattern associated with each potential WNPE 
was the inspection of 3-h surface weather maps from the 
Weather Prediction Center’s Surface Analysis Archive 
(https://www.wpc.ncep.noaa.gov/archives/web_pages/
sfc/sfc_archive.php), 12-h surface weather maps from 
the Storm Prediction Center’s archive (https://www.
spc.noaa.gov/obswx/maps/), and archived radar data. 
Four synoptic patterns conducive to warm-air advection 
over a cold surface layer, each with some degree of 
cold-air damming, constituted the classification. These 
include: (1) passage of a low-pressure center to the west 
of the study area (southerly sourced warm advection), 
(2) Miller-A type low-pressure center evolution (Miller 
1946), with cyclone development and emergence from 
the southeastern United States and passage along the 
Atlantic Ocean coastline (Atlantic-sourced warm 
advection), (3) Miller-B type low-pressure center 
evolution (Miller 1946), with cyclone passage from west-
to-east over or to the south of the study area followed 
by intensification or secondary cyclogenesis near the 
coastline (Atlantic-sourced and/or southerly sourced 
warm advection), and (4) high-pressure center passage 
to the north in a classic cold-air damming scenario east 
of the Appalachian Mountains beneath isentropic lift of 
warmer southerly flow aloft (colloquially referred to as 

Location Station ID Elevation (m) Sounding Station
Chantilly, VA KIAD 93 KIAD

Charlottesville, VA KCHO 195 KRNK, KIAD
Greensboro, NC KGSO 270 KGSO

Roanoke, VA KROA 358 KRNK
Blacksburg, VA KBCB 654 KRNK

Table 1. The four ASOS and one AWOS (KBCB) station locations (Fig. 1). The sounding station linked to each 
location is indicated.

Figure 2. The locations of the five surface stations 
(KBCB, KCHO, KGSO, KIAD, KROA) and three 
upper-air stations (KGSO, KIAD, KRNK; Table 1) 
across surface elevation (200-m interval) within the 
mid-Atlantic region.

https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive.php
https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive.php
https://www.spc.noaa.gov/obswx/maps/
https://www.spc.noaa.gov/obswx/maps/
http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_02.png
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“overrunning”). Stratification by synoptic pattern was 
intended to support a more granular analysis of forecast 
soundings associated with WNPEs.
	 Observational data from the array of soundings 
within the timeframe of each potential WNPE (and 
ultimately exhibiting a warm nose coincident with 
precipitation) were downloaded from the University of 
Wyoming upper-air data portal (http://weather.uwyo.
edu/upperair/sounding.html). Soundings from KRNK 
were linked to potential WNPEs at three ASOS/AWOS 
locations (KBCB, KROA, KCHO), while soundings at 
KIAD were linked to potential WNPEs at two locations 
(KIAD, KCHO), and soundings at KGSO were only 
linked to potential WNPEs at the KGSO ASOS site 
(Fig. 2). At KCHO, a mixed-precipitation event led 
to review of coincident soundings at both KRNK and 
KIAD. As the interest is in WNPEs, only observed 
soundings exhibiting a warm nose above a freezing 
layer, and coincident with saturation of the lower 
atmosphere, were retained for comparison with model 
soundings. Saturation was defined as the occurrence 
of precipitation at the co-located ASOS/AWOS site at 
the time of the sounding or within the preceding hour 
(coinciding with sounding initiation).
	 Several metrics were calculated to characterize 
each sounding. In addition to surface air temperature, 
atmospheric thickness between key pressure levels was 
calculated as an indication of layer temperature. Simple 
linear interpolation was employed between observed 
data points to estimate the vertical position of key 
thresholds (e.g., 0°C air temperature) that fell between 
observations. Thicknesses were calculated for the 
1000–500-, 1000–700-, 850–700-, and 1000–850-hPa 
layers. Multiple variables were recorded or calculated 

for both the surface-based cold layer and elevated 
warm nose, including minimum and maximum cold- 
and warm-layer temperature, mean temperature, mean 
wind direction and speed, pressure and height bounds, 
and the negative and positive areas using the Bourgouin 
method (Bourgouin 2000). The Bourgouin method can 
be used to predict probable precipitation type based 
on thermal condition and depth of the warm and cold 
portions of the thermal profile, or the areas of the warm 
(positive area) and cold (negative area) layers on a 
thermodynamic diagram (e.g., tephigram or skewT–
logp). We used the original Bourgouin method because 
the modified version from Birk et al. (2021) was not 
available at the time of data analysis. The Bourgouin 
method requires only mean layer temperature (Tt) 
and potential temperature (θ) at the top and bottom 
of the layer. The Bourgouin layer area is calculated as 

where Cp is the specific heat of air at constant pressure 
(1004 J kg–1 K–1). Applied to the cold and warm layers 
separately, the computation yields a solution for area 
on a thermodynamic diagram in units of specific 
energy (J kg–1). Bourgouin (2000) used precipitation-
type observations and a linear relationship between 
corresponding positive and negative areas to establish 
a predictor of precipitation type [ice pellets (IP) versus 
freezing rain (FZRA)] based on the relative sizes of the 
two areas. A small positive area and large negative area 
supports ice pellets, while a large positive area and small 
negative area supports freezing rain. The Bourgouin 
thresholds for determining probable precipitation type 
based on negative area (NA) and positive area (PA) 
values are:

IP: NA > (66 + 0.66PA)	 (2)

FZRA: NA < (46 + 0.66PA)	 (3)

FZRA/IP: (46 + 0.66PA) ≤ NA ≤ (66 + 0.66PA)	 (4)

The Bourgouin method is an element of the BUFKIT 
forecast profile visualization and analysis toolkit 
(https://training.weather.gov/wdtd/tools/BUFKIT/
index.php, Mahoney and Niziol 1997) used in many 
NWS forecast offices.

Table 2. The nine METAR weather reports used to 
identify precipitation and their definitions. The codes 
may include a qualifying code of freezing (FZ) and 
modifiers to indicate intensity as heavy (+) or light (-).
Code Definition
BR Mist
DZ Drizzle
GS Small Hail/Snow Pellets (<5 mm)
IC Ice Crystals
PL Ice Pellets
RA Rain
SG Snow Grains
SN Snow
UP Unknown Precipitation

(1)

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
https://training.weather.gov/wdtd/tools/BUFKIT/index.php
https://training.weather.gov/wdtd/tools/BUFKIT/index.php
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b.	 Observed versus forecast sounding analysis

	 For the three numerical weather prediction models 
that are the focus of this study (NAM, NAMnest, and 
RAP), forecast model sounding data associated with 
each observed warm-nose sounding were downloaded 
from the IEM archive site (https://mtarchive.geol.
iastate.edu/). The data are Binary Universal Form for 
the Representation of meteorological data (BUFR) 
soundings converted to BUFKIT format and represent 
the native model vertical grid spacing. For each of the 
three models, data were downloaded for model runs at 
the observed sounding time (i.e., model initialization) 
and 12 h before the observed sounding. For the longer-
horizon NAM and NAMnest models, data also were 
downloaded for model runs at 24 and 36 h before 
the observed sounding. For the shorter-horizon RAP 
model, data also were downloaded for model runs at 3 
and 6 h before the observed sounding. Thus, four model 
runs were the focus for each of the NAM (0 h, +12 h, 
+24 h, and +36 h), NAMnest (0 h, +12 h, +24 h, and 
+36 h) and RAP (0 h, +3 h, +6 h, and +12 h) models. 
The higher-resolution models and shorter-term forecast 
horizons were chosen to focus on the winter-storm 
warning period and the near-term update periods for the 
higher-resolution models used by the NWS. While the 
RAP model generates forecasts out to 51 h four times 
per day, archived BUFR data are only available for the 
hourly model runs with forecasts out to 21 h, and it is 
unclear whether forecasters are aware when the blended 
cycles they are using include the extended RAP cycles.
	 Observed and forecast saturated soundings during 
WNPEs were compared for each of the three sounding 
locations. Comparisons were made for each of the four 
model runs of each of the three models. With the research 
focus on forecasts of the vertical thermal profile rather 
than error in forecast timing, flexibility in the timing 
of a saturated forecast sounding (model-generated 
precipitation) relative to the observed sounding time 
was instituted. Designated for comparison with an 
observed sounding was the saturated forecast model 
sounding nearest the observed sounding time, but 
with a limit of ≤3 h from the observed sounding. 
Beyond visual depictions of observed and forecast 
soundings, mean absolute error [MAE; Eq. (5)] and 
mean percent error [MPE; Eq. (6)] were calculated to 
reflect the general magnitude and bias of forecast error. 

Error assessment focused on atmospheric thickness 
variables and the characteristics of the cold and warm 
layers (e.g., depths, positive/negative areas, maximum/
minimum/mean temperatures for a layer).

3.	 Analysis and discussion

a.	 Warm-nose precipitation events

	 Within the study region, 45 single-site or multi-
site (coincidence between two or more ASOS/AWOS 
locations) WNPEs were identified for the 6-yr period, or 
an average of 7.5 yr–1 (Table 3). The locations of highest 
elevation (KBCB) and largest latitude (KIAD) have 
the greatest number of WNPEs during the 6-yr study 
period (Table 3). Nearly all of the WNPEs occurred 
in four of the six winter seasons studied, as few were 
identified for each of the 2015–2016 and 2016–2017 
seasons (Table 3). For the WNPEs at each location 
and regionally, individual precipitation observations 
during the event were predominantly a combination 
of ice pellets and freezing rain, ranging from 44% 
(KIAD) to 57% (KBCB; Table 3). For all precipitation 
observations across the region associated with the 45 
regional WNPEs, 51% were either ice pellets or freezing 
rain, 28% were snow, and 21% were rain (Table 3).
	 Of the 45 regional events, 20 were single site while 
only two involved all five ASOS/AWOS locations 
(Table 4). Aside from the lengthier five-site events, 
the mean per-site duration of a WNPE was between 12 
and 15 h, with precipitation occurring during 55–70% 
of the event extent (Table 4). Mean per-site event-total 
precipitation generally ranged between 9 and 14 mm 
(0.35 and 0.55 in) with a mean intensity of around 
1 mm h–1 (0.04 in h–1; Table 4). While each WNPE 
inherently involves cold-air damming, approximately 
71% (32) of the 45 WNPEs were associated with a low-
pressure center/mid-latitude cyclone. These involved 
either passage to the west of the study area (10), or 
evolutions of type Miller-A (passage to the east from 
the southeastern United States; 11) or Miller-B (passage 
from west-to-east with redevelopment to the east; 11, 
see Table 4). Seven WNPEs, including the two that 
involved all five ASOS/AWOS locations (Table 4), were 
characterized primarily by an anticyclone to the north 
and classic synoptically driven cold-air damming—(5)

(6)

https://mtarchive.geol.iastate.edu/
https://mtarchive.geol.iastate.edu/
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the closest evidence of a surface cyclone being far to 
the south of the study area—and overlaid by broad 
southerly isentropic lift, or overrunning. Six WNPEs 
were associated with a nondescript synoptic pattern, 
possibly characterized by a weak wave of low pressure 
or weak frontal passage. These were left unclassified 
(Table 4).
	 For the 101 potential WNPEs across the five 
ASOS/AWOS locations (Table 3), 88 coincided with 
≥1 observed sounding with a distinct warm nose (nine 
without a warm nose, three missing soundings, and one 
without a cold surface layer). Some potential WNPEs 
had multiple soundings within their timeframes, 
yielding a total of 132 potential soundings for study. 
However, as soundings at KRNK and KIAD were 
linked with multiple ASOS/AWOS sites, multi-site 
events eliminated 37 duplicate soundings to produce 
a population of 95 soundings for potential analysis. 
Finally, the requirement of observed precipitation at 

or within 1 h preceding the sounding time reduced the 
number of soundings for further study to 55 soundings: 
19 at KRNK (representing events at KBCB, KCHO, and 
KROA), 17 at KGSO, and 19 at KIAD (representing 
events at KCHO and KIAD).
	 Composite soundings for each location depict the 
warm nose and the veering of low-level winds with 
height that is symbolic of warm-air advection (Figs. 
3a–c). Mean values of sounding metrics at the three 
locations (Table 5) illustrate the relative strength of the 
warm nose compared to the surface-based cold layer. 
At both KGSO and KIAD, the depth of the warm nose 
is considerably greater than the depth of the cold air 
beneath (Table 5). The greater depth and/or greater 
difference from freezing for the warm nose relative to 
the cold layer at the three locations equates to positive 
area values (warm layer) that are 1.7 (KRNK) to 2.5 
(KGSO, KIAD) times larger than negative-area values 
(cold layer; Table 5). Mean surface winds are from the 

Location Total 2013-14 2014-15 2015-16 2016-17 2017-18 2018-19 SN RA IP/FZRA
BCB 27 6 6 1 2 4 8 34 9 57
CHO 13 5 3 1 1 0 3 20 28 52
GSO 19 6 3 2 0 4 4 21 27 52
IAD 24 7 7 1 1 5 3 30 26 44
ROA 18 5 4 1 1 3 4 22 29 49

Region 45 11 11 3 2 10 8 28 21 51

Table 3. Number of warm-nose precipitation events, November through April, at each ASOS/AWOS site for the 
seasons 2013–2014 through 2018–2019. Region values represent the total of single- and multi-location (coincident 
at two or more locations) events across the study region as a whole. Also included for each location is the mean 
percentage of event precipitation observations as snow (SN), rain (RA), or either ice pellets (IP) or freezing rain 
(FZRA).

Table 4. For the 45 regional WNPE events evident at one or more ASOS/AWOS sites (n Sites), the number of events 
(n Events), and from all events in each category of n Sites, the per-site mean values of the event length, percent of 
event hours with precipitation (Percent P), total precipitation, and precipitation intensity. Also listed is the number 
of events within each category of nSites associated with overrunning (OR), with cyclone passage to the west of 
the study region (West), with Miller-A or -B cyclone evolution, and with an unclassifiable synoptic pattern (None).

Mean Event Characteristics Synoptic Pattern Frequency

n 
Sites

n 
Events

Length 
(h)

Percent 
P

Total P 
(mm)

P
Intensity 
(mm/hr)

OR West Miller-A Miller-B None

1 20 13.4 62.6 11.2 0.9 2 4 3 8 3
2 7 12.2 69.5 14.6 1.5 0 2 4 0 1
3 10 12.3 55.6 8.8 1.0 2 1 3 2 2
4 6 15.2 63.6 13.4 1.2 1 3 1 1 0
5 2 21.5 52.9 12.8 1.1 2 0 0 0 0

Total 45 14.3 60.6 11.7 1.1 7 10 11 11 6



ISSN 2325-6184, Vol. 10, No. 1	 8

	 Ellis et al	 NWA Journal of  Operational Meteorology	 4 March 2022

northeast at each location, but the mean wind from the 
cold-to-warm layers veers from east to south (Figs. 
3a–c; Table 5). Atmospheric thickness, reflecting 
mean temperature, is rather consistent across the 
three locations for the 1000–500-hPa portion of the 
atmosphere, and especially so for the partial layers of 
1000–700, 850–700, and 1000–850 hPa (Table 5).

b.	 Observed versus forecast sounding analysis

	 For the 55 forecast soundings during WNPEs, each 
of the models generally simulates the thermal structure 
of the lower atmosphere well, but with thickness biases 
for the surface-based cold layer and the overlying warm 
nose. Because mean-layer temperature is skewed by 
error in depth, minimum cold-layer temperature and 
maximum warm-nose temperature are used to evaluate 
explicit temperature error. Commonly across the three 
models and three locations, surface air temperature and 
minimum/maximum air temperatures within the cold/
warm layers are well forecast, with MPEs between 99 
and 101% and standard deviations <1% (not shown). 
A slight warm bias is common, except for a cool bias 

in maximum warm-nose temperature within the RAP 
model. Composite soundings (Fig. 4) for the +12-h 
runs of the NAM and NAMnest and +3-h cycle of the 
RAP (model runs prior to, but closest to, the observed 
sounding time) illustrate the mean accuracy of forecast 
thermal profiles. Note that differences in composite 
soundings are somewhat muted when computing mean 
values on a 25-hPa vertical grid from all soundings; but 
the relatively coarse vertical grid spacing is necessary 
to yield a robust computation of mean values at each 
pressure level.
	 Repeating the process for generating composite 
soundings, but focusing on the difference in forecast 
and observed air temperature (forecast minus observed), 
provides a clearer illustration of the vertical pattern of 
model error (Fig. 5). In terms of mean error, there is 
very good agreement above 800 hPa for each model 
at each location, while the variability in RAP forecast 
error (standard deviation of the temperature difference) 
is larger than that for the NAM or NAMnest (Fig. 5). 
At KRNK, the warm bias in NAM forecasts is most 
evident between 900 and 800 hPa (Fig. 5a), and while 
the same is true within NAMnest forecasts, the better 

Table 5. Mean values from the observed soundings identified for forecast analysis at KRNK (n = 19), KGSO (n 
= 17), and KIAD (n = 19). In addition to surface air temperature (Ta), metrics for the surface-based cold layer and 
overlying warm layer are shown, including the negative and positive areas calculated using the Bourgouin method, 
along with thickness values for key pressure ranges. 1 kt = 0.5144 m s–1.

Layer Metric KRNK KGSO KIAD
Surface Surface Ta (°C) –0.9 –0.8 –0.3

Cool Layer

Minimum Ta (°C) –3.2 –3.7 –2.9
Mean Layer Ta (°C) –2.0 –2.3 –1.8

Negative Area (J kg–1) 76.2 81.8 60.5
Mean Layer Wind Direction (degrees) 166.1 82.1 126.1

Mean Layer Wind Speed (kt) 13.2 20.3 17.3
Thickness (gpm) 628.5 683.7 701.7

Top Layer Pressure (hPa) 865.2 904.8 915.4

Warm Layer

Maximum Ta (°C) 3.7 4.9 4.1
Mean Layer Ta (°C) 2.3 2.9 2.4

Positive Area (J kg–1) 132.9 202.5 149.6
Mean Layer Wind Direction (degrees) 211.2 175.2 164.3

Mean Layer Wind Speed (kt) 35.6 36.1 31.0
Thickness (gpm) 582.5 1395.0 1248.0

Top Layer Pressure (hPa) 746.6 765.1 787.2

Thickness

1000–500 hPa (gpm) 5472.7 5474.8 5457.1
1000–700 hPa (gpm) 2862.8 2867.4 2864.2
850–700 hPa (gpm) 1561.8 1563.5 1560.6
1000–850 hPa (gpm) 1301.1 1303.8 1303.6



mean accuracy of NAMnest forecasts is evident (Fig. 
5b). A mean warm bias in RAP forecasts at KRNK is 
evident between the surface and 850 hPa (Fig. 5c). At 
KGSO, a warm bias is evident from the surface up to 
about 875 hPa for NAM forecasts (Fig. 5d) and from 
the surface up to about 800 hPa for NAMnest forecasts 
(Fig. 5e), although the mean and variability in error 
is generally smaller for the NAMnest. A much larger 
variability in error and a warm bias extending from the 
surface up to 800 hPa is evident for RAP forecasts at 
KGSO (Fig. 5f). The patterns of larger variability in 
error for RAP forecasts and better mean accuracy with 
NAMnest forecasts also are evident at KIAD (Figs. 
5g–i). As at KGSO, the warm bias in NAM forecasts 

at KIAD is evident from the surface to about 850 hPa 
(Fig. 5g), while that for RAP forecasts extends from 
the surface to about 800 hPa (Fig. 5i). Unlike for any 
other model-location combination, NAMnest forecasts 
at KIAD have a mean cool bias between about 875 to 
800 hPa, but with the more typical warm bias beneath 
this layer (Fig. 5h).
	 It is common for the surface-based cold layer to be 
too thin, and the warm nose to be too thick, across the 
three models and three locations. In some cases, errors 
decrease with shorter lead times (e.g., RAP warm-nose 
depth at KIAD), but in many cases, the biases remain 
large or even increase at the analysis time (e.g., NAM 
warm-nose depth at KIAD; Figs. 6–8). For WNPEs at 
KRNK, the surface-based cold layer is consistently too 
thin for all the models at all model forecast times (Fig. 
6a). The error in RAP model forecasts is generally the 
largest of the three models, and arguably largest at the 
time of the observed sounding (0 h; Fig. 6a). For the 
NAM, the cold layer tends to be too thin at all forecast 
lead times (Fig. 6a). The forecast warm nose at KRNK 
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Figure 3. SkewT–logp diagrams that illustrate 
composite soundings through the lower atmosphere 
(25-mb increment) for WNPEs at (a) KRNK (n = 19), 
(b) KGSO (n = 17), and (c) KIAD (n = 19). Red lines 
represent air temperature (°C), green lines represent 
dewpoint temperature, and blue lines represent wet-
bulb temperature. Wind direction and speed (kt; 1 kt = 
0.5144 m s–1) are indicated to the right of each diagram.

Figure 4. Composite observed (red) and forecast (blue) 
air temperature and wind speed/direction through 700 
hPa for WNPEs at each location and each model. 
Forecasts for the NAM and NAMnest are for the model 
run 12 h before the observed sounding time, while 
composites for the RAP are for the model run 3 h before 
the observed sounding time.

Figure 5. Mean of the difference in forecast and 
observed air temperature (blue line; forecast minus 
observed) through 700 hPa for WNPEs at each location 
and each model. Forecasts for the NAM and NAMnest 
are for the model run 12 h before the observed sounding 
time, while composites for the RAP are for the model 
run 3 h before the observed sounding time. Also shown 
are the temperature differences plus/minus one standard 
deviation (red lines). 

http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_03.png
http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_04.png
http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_05.png


is generally too thick, particularly at +12 h and nearer 
the observed sounding for the NAM and NAMnest, 
and for +3- and +6-h forecast soundings for the RAP, 
which also exhibits high variability in the error of 
forecast depth (Fig. 6b). Forecast errors for layer depth 
are realized in forecasts of negative and positive areas. 
For the negative area, variability in error associated 
with the NAM improves with model runs to an area that 
is slightly too small at 0 and 12 h before the observed 
sounding (Fig. 6c). The NAMnest generally forecasts 
the negative area better than the NAM, particularly 
in terms of reduced variability in error, while RAP 
forecasts of negative area are consistently too small and 
with a high variability in error (Fig. 6c). For the positive 
area at KRNK, NAM forecasts are only slightly too 
large, particularly at 12 h before the observed sounding, 
while NAMnest forecasts are too small initially and too 
large closer to the observed sounding time, but with 
a distinct reduction in error variability (Fig. 6d). In 
contrast, RAP forecasts of positive area are generally 
too small (Fig. 6d), owing to a cool bias in maximum 
warm-layer temperature that supersedes a thick bias in 
warm-layer depth. In addition to the small bias in the 
positive area, the error in RAP forecasts of the positive 
area is highly variable (Fig. 6d).
	 The general characteristics of model bias at 
KRNK—a cold layer/negative area that is too thin/

small and a warm nose/positive area that is too thick/
large—are also evident at KGSO. Forecasts of the 
surface-based cold layer are consistently too thin for 
all three models, although RAP forecasts improve 
at the time of the observed sounding (0 h; Fig. 7a). 
Each model tends to forecast a warm nose that is too 
thick, but with improvement with model runs for the 
NAMnest, and improvement at the observed sounding 
time (0 h) for the NAM and especially for the RAP (Fig. 
7b). Negative area forecasts for all three models are 
too small, but there is some improvement with shorter 
lead times for the NAM and NAMnest, and modest 
improvement through model runs for the RAP (Fig. 7c). 
Forecasts of the positive area are too large for the NAM 
and NAMnest, and each improves with shorter lead 
times (Fig. 7d). Similar to KRNK, RAP model forecasts 
of positive area at KGSO are slightly too small, owing 
to a cool bias in maximum warm-nose temperature; but 
unlike at KRNK, variability in model error is generally 
smaller than for the other models (Fig. 7d).
	 Forecast errors at KIAD generally conform to those 
at KRNK and KGSO, albeit with a more pronounced 
thin bias within the surface-based cold layer than at 
the other locations. Forecasts of cold-layer depth are 
consistently too thin, but variability in forecast error 
improves approaching the observed sounding time (Fig. 
8a). Forecasts of the warm nose are too thick, with some 
improvement closer to the observed sounding time for 
the RAP model (Fig. 8b), which more accurately portrays 
warm-layer depth than cold-layer depth. Forecasts of 
the negative area at KIAD are consistently too small 
across all three models (Fig. 8c), while forecast biases 
in the positive area at KIAD are a bit more variable. 
NAM forecasts of the positive area are too large at 
+12 h and closer to the observed sounding time (Fig. 
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Figure 6. Box plots characterizing the population 
of forecast minus observed values for (a) cold and 
(b) warm layer depth (gpm), and (c) negative and (d) 
positive area (J kg–1) at KRNK for the NAM, NAMnest, 
and RAP models. The four model runs for the NAM and 
NAMnest (0 h, +12 h, +24 h, +36 h) and RAP (0 h, +3 
h, +6 h, +12 h) models are ordered left-to-right from 
latest (0 h) to earliest (+36 h or +12 h) on the horizontal 
axis. Box plot whiskers represent the 10th and 90th 
percentiles.

Figure 7. Same as Fig. 6, but for KGSO.

http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_06.png
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8d). NAMnest forecasts of positive area are too small 
early within the model cycle (+36 h), then slightly 
too large but with a lessening degree of variability in 
model error (Fig. 8d). RAP model forecasts of positive 
area at KIAD are generally more accurate than for the 
NAM and NAMnest, particularly at +6 h and closer to 
the observed sounding time (Fig. 8d). Unlike at KRNK 
and KGSO, RAP forecasts of positive area are too large 
nearer the sounding time, meaning that the warm-layer 
thick bias (Fig. 8b) outweighs the very slight cool bias 
in maximum warm-nose temperature.
	 Counts of large +/– biases in the thicknesses of 
the cold and warm layers illustrate skewness in the 
forecasts. We define a large model bias as an absolute 
error magnitude greater than the MAE. Focusing on the 
forecast model run nearest the observed sounding time 
for each model (+12 h for NAM and NAMnest, and 
+3 h for RAP), the thin bias in the surface-based cold 
layer in each model and the thick bias in the warm nose 
within the NAM and NAMnest are obvious (Table 6). 
For the three sounding locations taken together, 96% of 
the large NAM biases in the depth of surface-based cold 
layer are too thin, while 95% of large biases in warm-
nose depth are too thick (Table 6). While still evident, 
the contrast is not quite as stark for the NAMnest, with 
70% of large biases in the depth of cold air being too 
thin, and 75% of large biases in the warm nose as too 
thick (Table 6). For the RAP model, 94% of large biases 
in surface-based cold-layer depth are too thin, but large 
biases in warm-nose depth are near evenly split between 
too thick (58%) and too thin (42%; Table 6).
	 Counts of large biases in negative and positive areas 
reinforce those for layer depths. Collectively, for the 
three sounding locations, 86% of large NAM errors in 
negative area are for an area that is too small, and 86% 
of large errors in positive area are for an area that is too 

large (Table 7). As with layer-depth biases, large errors 
in negative and positive areas within the NAMnest are 
slightly less skewed than for the NAM, but the contrasts 
are still very obvious. Of the large errors in negative 
area forecasts by the NAMnest, 76% are for an area that 
is too small, and of the large errors in positive area, 79% 
are for an area that is too large (Table 7). Large RAP 
model errors in the negative area are highly skewed 
toward an area that is too small (95% of the cases; Table 
7); but large errors within RAP forecasts of positive 
area are rather evenly split between too large (54%) and 
too small (46%; Table 7).
	 Comparison of forecast and observed partial 
atmospheric thicknesses indicate larger errors lower 
within the cold-layer/warm-nose thermal structure. A 
larger warm bias within the RAP model at KRNK is 
evident in atmospheric-thickness biases for the deeper 
1000–500-hPa layer and for the lower layers of 1000–
700 and 1000–800 hPa (Fig. 9a). However, the better 
performance of the RAP model within the warm nose 
is apparent in the accuracy of 850–700-hPa thickness 
forecasts at KRNK (Fig. 9a). This also is the case for 
the RAP model at KGSO (Fig. 9b) and for all three 
models at KIAD (Fig. 9c), indicating that temperature 
across essentially the top half of the warm nose is 
rather well forecast. More problematic for all models 
at all locations is the warm bias illustrated by thickness 
forecasts for the lower layers of 1000–700 and 1000–
800 hPa, which translates to pronounced error in the 
deeper 1000–500-hPa layer for all models at each of the 
locations (Fig. 9).
	 Composite data for observed and forecast wind 
speed/direction (not explicitly shown, but illustrated in 
Fig. 4) do not depict clear errors in wind to accompany 
the temperature error within the models. However, 
upon creating synoptic atmospheric composites 
associated with large warm model bias, it appears that 
error in the thickness of the surface-based cold layer 
and the overlying warm nose correspond differently 
to the strength of observed vertical motion. Using 
gridded NCEP/NCAR daily reanalysis data (Kalnay et 
al. 1996), mapped composites of mean observed daily 
vertical velocity in isobaric coordinates (omega, Pa 
s–1) at the 850-hPa level were created for instances that 
coincided with large model errors in cold- and warm-
layer thermal characteristics. These were contrasted 
with composites of vertical velocity coinciding with 
instances of relatively accurate forecasts of the cold 
and warm layers. Instances of large model error are 
defined as before—absolute error in the negative 
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Figure 8. Same as Fig. 6, but for KIAD.
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area (cold layer) or positive area (warm nose) greater 
than the MAE. These are distinguished from all other 
instances, meaning an error in positive or negative 
area less than the MAE. Eliminating duplicate dates 
(coincident across the three models or three locations) 
yielded 19 instances of large error in negative area (cold 
layer), in which the forecast is too small, contrasted 
with 30 instances of little error in forecast negative 
area. Similarly, composites relating to the positive area 
(warm nose) are based on 21 instances of large error, in 
which the forecast is too large, and 35 instances of little 
error in forecast positive area.
	 Composite omega fields are characterized by 
negative values across the study region for large error in 
both the cold layer (Fig. 10a) and warm nose (Fig. 10c), 
indicating the expected upward motion (decreasing 
pressure) associated with the precipitation events 
studied. Observed upward motion is considerably 

stronger when there is large error in the cold-layer 
forecast (Fig. 10a) compared to large error in the 
warm-layer forecast (Fig. 10c). Reinforcing this are 
the negative differences in observed omega between 
large error and little error in the cold-layer forecast 
(Fig. 10b) that are in contrast to the positive differences 
associated with the warm layer (Fig. 10d). Considering 
the negative omega values of the observed vertical 
motion field across the region, the negative differences 
in omega for the cold layer (Fig. 10b) indicate a more 
strongly negative omega associated with large error. 
In other words, the models have a tendency toward 
a warm bias within the cold layer under stronger 
synoptic-scale upward motion. The positive differences 
in observed omega in the warm layer (Fig. 10d) indicate 
a weaker negative omega associated with large error, 
indicating that the models have a tendency toward a 
warm bias in the warm nose under weaker synoptic-
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NAM NAMnest RAP Total
Cold Warm Cold Warm Cold Warm Cold Warm

KRNK
Thick 0 8 4 4 0 4 4 16
Thin 8 0 6 1 4 1 18 2

KGSO
Thick 0 6 2 6 1 0 3 12
Thin 9 1 8 0 5 2 22 3

KIAD
Thick 1 6 2 2 1 3 4 11
Thin 6 0 5 3 7 2 18 5

Total
Thick 1 20 8 12 1 7 11 39
Thin 23 1 19 4 16 5 58 10

Table 6. Frequency of large model error in the depth of the cold and warm layers within the vertical atmospheric 
sounding at KRNK, KGSO, and KIAD for the 12-h lead-time runs of the NAM and NAMnest models and for the 
3-h lead-time run of the RAP model. Values represent frequency with which the depth exceeds the MAE magnitude 
in the positive (too thick) and negative (too thin) directions.

Table 7. Frequency of large model error in negative and positive areas of the vertical atmospheric sounding at 
KRNK, KGSO, and KIAD for the 12-h lead-time runs of the NAM and NAMnest models and for the 3-h lead-time 
run of the RAP model. Values represent frequency with which the area exceeds the MAE magnitude in the positive 
(too large) and negative (too small) directions.

NAM NAMnest RAP Total
Cold Warm Cold Warm Cold Warm Cold Warm

KRNK
Large 2 7 3 8 0 3 5 18
Small 4 0 4 1 5 2 13 3

KGSO
Large 1 6 1 5 0 1 2 12
Small 6 1 5 0 8 3 19 4

KIAD
Large 0 5 1 2 1 3 2 10
Small 8 2 7 3 5 1 20 6

Total
Large 3 18 5 15 1 7 9 40
Small 18 3 16 4 18 6 52 13



scale upward motion. This dichotomy in the strength 
of observed upward motion corresponding with error in 
the cold- and warm-layer forecasts is underscored in the 
composite difference in omega associated with each. 
When subtracting the composite omega associated with 
large error in the cold layer from that for the warm layer 
(Fig. 10e), the positive values indicate the stronger 
observed upward motion in cases of cold-layer error. 
	 That model errors, regionally, tend to correspond 
with a different strength of observed upward motion 
depending upon whether the error is in the cold or warm 
layer reinforces the finding that warm bias in the two 
layers is usually not coincident. Regionally and across 
all models, of the 92 instances of large error in a positive 
area too large (n = 52) and a negative area too small (n = 
40; Table 7), only 12 (13%) coincided. In other words, 
40 of 52 (77%) large errors in the warm layer did not 
coincide with a large error in the cold layer, and 28 of 
40 (70%) large errors in the cold layer did not coincide 
with a large error in the warm layer.
	 The difference in the strength of upward motion per 
layer of bias seems to align with the stratification of 
large model error by synoptic pattern, particularly for the 
Miller-B type cyclone evolution and for overrunning. 
The Miller-B pattern was associated with many more 
cases of a large warm bias in the cold layer (16) than in 
the warm layer (4; Table 8). The mid-latitude cyclone 
of the Miller-B pattern should yield stronger synoptic-
scale upward motion (symptomatic of a cold-layer bias) 

than the overrunning pattern, which was associated with 
more cases of large warm bias in the warm layer (10) 
than in the cold layer (6; Table 8). Overrunning should 
generally yield weaker synoptic-scale upward motion 
(symptomatic of a warm-layer bias) than the Miller-B 
pattern.
	 As isentropic lift is likely an important contributor 
to the vertical motion associated with the WNPEs 
studied (warm-air advection over a cold surface layer), 
the observed depth of the cold surface layer may 
reinforce the idea of stronger synoptic-scale upward 
motion with warm bias in the cold layer than with warm 
bias in the warm layer. The idea is that a deeper cold 
layer may correspond to stronger isentropic lift, the 
strength of the flow notwithstanding. As there are layer-
depth differences by location, observed cold-layer data 
are portrayed for the three models collectively (+12-h 
NAM and NAMnest and +3-h RAP), but segregated by 
location. Coinciding with a large error in the surface-
based cold layer (i.e., too thin) is an observed cold-
layer depth that is generally greater than for instances 
of little error at all three locations (Fig. 11). The greater 
observed cold-layer depth with warm bias corresponds 
to the stronger observed upward motion outlined earlier. 
Conversely, coinciding with instances of a large error 
in the warm nose (i.e., too thick) is an observed cold-
layer depth that is generally less than it is for instances 
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Figure 9. Box plots characterizing the population 
of forecast minus observed values for atmospheric 
thickness at (a) KRNK, (b) KGSO, and (c) KIAD 
for the +12-h model runs of the NAM and NAMnest 
and +3-h run of the RAP model. Thicknesses from 
1000–500, 1000–700, 850–700, and 1000–800 hPa are 
ordered from left-to-right on the horizontal axis. Box 
plot whiskers represent the 10th and 90th percentiles.

Figure 10. For instances of large warm bias within 
the cold (a, b) and warm (c, d) atmospheric layers, 
composite means of observed 850-hPa omega (Pa s–1) 
(a, c) and the difference from instances with little bias 
(b, d) collectively for all models regionally. Differences 
are taken as observed omega during large model error 
minus small error for the +12-h runs of the NAM and 
NAMnest models and +3-h model run of the RAP. Also 
shown (e) is the difference in observed omega between 
occurrences of large model error in the warm layer and 
large model error in the cold layer (map c minus map a).

http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_09.png
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of little error—most obviously at KRNK, but also at 
KGSO, while only marginally so at KIAD (Fig. 11). 
The shallower observed cold-layer depth coinciding 
with warm bias in the warm nose corresponds to the 
weaker observed upward motion outlined earlier.
	 In summary, instances of a cold-layer forecast as 
too shallow generally coincide with observed stronger 
upward motion over a deeper cold layer, while instances 
of a warm-nose forecast as too thick generally coincide 
with observed weaker upward motion over a shallower 
cold layer. These findings are collectively expressed 
in synoptic composites of the 295K isentropic surface 
derived from sounding data from seven sounding sites 
across and to the south of the study area (Fig. 12). 
The same warm-bias and little-bias dates for the three 

models and three study locations (collectively) that 
were used to create composite omega maps (Fig. 12) 
were used to create composite maps of the observed 
295K height and wind direction/speed (Fig. 12). There 
is little difference in observed wind direction and speed 
for the 295K isentropic surface between instances 
of large error and little error in either layer (Fig. 12). 
However, the observed isentropic surface across the 
mid-Atlantic study area is positioned higher in the 
atmosphere for instances of thin bias in surface-based 
cold-layer forecasts (Fig. 12a) compared to little error 
(Fig. 12b). The opposite is the case for the warm nose; 
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Table 8. Segregated by synoptic pattern, the frequency of large absolute error in negative area (too warm/shallow 
cold layer) and positive area (too warm/deep warm layer) for the 12-h lead-time runs of the NAM and NAMnest 
models and for the 3-h lead-time run of the RAP model at all locations combined (Table 7). Values are percentages 
of the total number of large errors of each synoptic pattern, and parenthetical numbers are raw counts.

Synoptic Pattern Negative Area, Small Bias Positive Area, Large Bias
Overrunning 11.5 (6) 25.0 (10)

Western L 30.8 (16) 25.0 (10)
Miller-A 23.1 (12) 35.0 (14)
Miller-B 30.8 (16) 10.0 (4)

Unclassified 3.8 (2) 5.0 (2)
Total 100 (52) 100 (40)

Figure 11. Box plots characterizing the population of 
observed surface-based cold-layer depth associated 
with warm forecast bias and little forecast bias in the 
cold and warm layers at KRNK, KGSO, and KIAD. 
Data correspond to biases within the +12-h model runs 
of the NAM and NAMnest and +3-h run of the RAP 
model, collectively. Box plot whiskers represent the 
10th and 90th percentiles.

Figure 12. For instances of large warm forecast bias 
and little forecast bias in cold (a, b) and warm (c, d) 
atmospheric layers, composite means of the observed 
295K isentropic surface elevation (gpm) and wind 
speed (knots)/directional vector. Elevation data are 
derived from the 295K elevation at the seven sounding 
locations for which wind speed and direction are shown. 
Data correspond to biases within the +12-h runs of the 
NAM and NAMnest models and +3-h model run of the 
RAP, collectively, for all models regionally. 

http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_11.png
http://nwafiles.nwas.org/jom/articles/2022/2022-JOM1-figs/Fig_12.png


the observed isentropic surface across the mid-Atlantic 
is positioned lower in the atmosphere for instances 
of a thick forecast bias (Fig. 12c) compared to little 
error (Fig. 12d). While not excluding other dynamical 
processes associated with vertical motion, it appears 
that the common warm model bias in the cold and 
warm layers of the WNPEs is related to the degree of 
isentropic lift occurring across the region. It is intuitive 
that model forecasts err toward a cold layer that is too 
thin for those study cases possessing the thicker cold 
layers, and that they err toward a warm layer that is too 
thick for those study cases possessing the thinner cold 
layers. This characterizes the models as too conservative 
in their forecasts of the thickest and thinnest cold layers 
for the events studied. But without deeper study of 
model physics, it is difficult to conclude whether the 
differences in apparent isentropic lift are an inherent 
coincidence with model error, or a cause of model error.
	 While forecast biases within the thermal profile 
during WNPEs are important, the accuracy with which 
the resulting precipitation type is forecast is ultimately 
most important for forecasters. Using the original 
Bourgouin (2000) method, we estimated precipitation 
type for the observed and forecast soundings studied, 
but we re-rendered precipitation type as rain when 
the surface air temperature was above freezing. 
Consolidating the results from the three locations yields 
52 forecast–observed precipitation-type comparisons 
for both the NAM and NAMnest models, and 45 for 
the RAP model. There is agreement in precipitation 
type for approximately two-thirds of the cases for each 
model (63.5% for the NAM, 67.3% for the NAMnest, 
and 64.4% for the RAP). In terms of the nature of 
bias in precipitation-type forecast, the NAM model is 
exclusively warm-biased with precipitation type (36.5% 
of all cases), while the NAMnest and RAP models are 
nearly so. For the NAMnest model, 28.9% of the 52 
cases are warm-biased and 3.8% are cold-biased, while 
for the RAP model, 26.7% of the 45 cases are warm-
biased and 8.9% are cold-biased.

4.	 Concluding discussion

	 The NAM, NAMnest, and RAP models 
adequately forecasted the general thermal structure 
of 55 atmospheric profiles from 45 warm-nose winter 
precipitation events occurring within the mid-Atlantic 
study region. The minimum air temperature within 
a surface-based cold layer, and the maximum air 
temperature within an elevated warm layer (or warm 
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nose), were both well forecast by the models. However, 
each of the models exhibited a warm bias that is evident 
in layer thickness—a cold layer too thin for each of the 
models, and a warm nose too thick, particularly within 
NAM and NAMnest forecasts. A well-forecast thermal 
structure (but with a warm bias) matches the findings of 
Ikeda et al. (2017) in their study of the HRRR model.
	 Large warm biases in each of the cold and warm 
layers, in terms of negative and positive areas, 
infrequently coincided, indicating that model error 
is not simply a deep-layer warm bias, but rather that 
it commonly is specific to thermal layer. Differences 
between forecast and observed atmospheric-layer 
thickness suggest this as well. While differences in the 
broader 1000–500-hPa thickness depict the general 
warm bias within the models, the upper portion of the 
warm layer, represented by the thickness of the 850–
700-hPa layer, is adequately forecast, particularly for 
the lower-elevation locations studied. Generally, the 
warm bias stems from the lower portion of the warm 
layer and below.
	 Comparison of observed and forecast wind velocity 
and direction revealed no obvious error for either 
of the models. However, synoptic-scale composites 
of observed vertical-velocity fields indicate that the 
instances of large warm model bias within the cold 
layer (too thin) tended to coincide with an observed 
atmosphere characterized by stronger upward motion 
across the region, while instances of large warm bias 
within the warm nose (too thick) tended to coincide 
with weaker observed upward motion across the region. 
This provides a basis for some speculation of the 
source of model error, with the degree of isentropic lift 
representing one possible mechanism by which model 
errors emerge. The stronger synoptic-scale vertical 
motion that coincides with the warm bias in the cold 
surface layer generally occurs when a deeper cold layer 
and higher isentropic surface are in place. In contrast, 
the weaker vertical motion that coincides with the warm 
bias in the elevated warm layer generally occurs when a 
shallower cold layer and lower isentropic surface are in 
place across the mid-Atlantic region.
	 Whether the association of model bias and vertical 
velocity stems from isentropic lift or dynamic forcing 
above, it is possible that model physics related to 
precipitation plays a role in layer-depth error. The 
varying degree of upward motion associated with error 
in the cold and warm portions of the atmosphere is 
likely associated with varying precipitation rates, from 
which the models may overestimate or underestimate 
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the degree to which warm air is brought downward from 
the elevated warm layer and/or the degree of evaporative 
cooling that is occurring. The latter is an error source 
suggested by Ikeda et al. (2017) in their study of the 
performance of the HRRR model. That large warm 
model bias in the cold layer (too thin) coincides with 
stronger upward motion across the mid-Atlantic region 
may mean a greater precipitation rate and larger degree 
of evaporative cooling that the models inadequately 
represent, yielding an insufficiently thick cold layer. 
As large warm model bias in the warm layer (too 
thick) coincides with weaker upward motion, a lesser 
precipitation rate may be the result, in which case the 
models may overestimate precipitation intensity and the 
degree to which warm air aloft is brought downward to 
yield a warm nose that is too thick. A definitive answer 
requires testing the model physics, but the results of 
this research can inform model-refinement efforts while 
offering guidance to forecasters within the mid-Atlantic 
region.
	 Within a few years, the NAM, NAMnest, and RAP 
models will be replaced by a different suite of high-
resolution models as part of the NWS’s Finite Volume 
Cubed-Sphere (FV3) dynamical core. To what extent the 
conclusions of this research will still apply is unknown. 
But, as the models will remain frozen in the interim, 
forecasters in the mid-Atlantic region may consider 
the inherent warm bias in model forecasts of thermal 
profile and precipitation type. Future work should 
investigate whether this warm bias persists in models 
with the FV3 core and, if so, whether the mechanisms 
might be similar to those identified in this study.
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